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CONVERGENCE OF RANDOM MEASURES AND POINT PROCESSES
ON THE PLANE

BY

RIMAS BANYS (Viunus)

Absrract. In the paper two topologies in the space of realizations
of random measures on the plane are discussed. The first one is usual
vague topology while another is relativized Skorohod’s topology. The
relation between convergence of random measure in these topologies
and conditions for convergence in relativized Skorohod's topology are
established.

1. Intreduction. The space M of realizations of random measures on the plane
may be considered as the subset of the space D[0, oc)® of “continuous from
above, with limits from below” functions. Thus the relativized Skorohod’s
topology is another candidate for topology on M instead of the usual vague
topology.

The relation between convergence in distribution of random measures in
vague topology and relativized Skorohod’s topology (s-topology) is inves-
tigated. The conditions for relative compactness of a sequence of random
measures w.r.t. convergence in the s -topology are given. They are simpler than
the conditions of relative compactness of a sequence of general random fields in
the space D[0, o)

From the results obtained the conditions for the convergence of superpo-
sitions of independent point processes to the Poisson processes are derived.

2. Thespace D = D[0, w0)% Let T=[0, o) = ¢t =(t,,1,): 0<1t; < 00, i
=1, 2}. For ¢t =(t,, t;)e T we define

E}l == {S’ -‘:(Sﬂ_; 32)‘5 T 8y = ijvs S5 = z‘z}, E’QO = fSE T & < tli 35 < tz},
O=1{seT sy =t), s;<t;}, EM={seT s, <ty, 5;21,}.
We equip T with the usual topology, generated by the norm

llell = max(ty, t5).
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Let D = D[0, c0)? denote the space of real valued functions on T which
are “continuous from above, with limits from below” in the following sense: for
each te T

(a) limx{s)(s — ¢, se EY) exists for all (i, /), i, j=0, 1,

and

(b) x(f) = limx(s)(s = ¢, se E}).

Let A be the class of all homeomorphisms of T onto itself of the form
A = (A,, A3) where 4, is a strictly increasing continuous function on [0, «0) with
4:(0) =0, 4;{co)= o0, i =1, 2, and the image of a point ¢ =(t,, t;) under a
homeomorphism 1 = (4, 4,) is A&t = (A, 1y, 43 13).

Let x, x;, X5, ...eD be given. We say that x, S-converges to x if there
exist 1y, 4,,...e 4 such that for each real a >0

lim sup |x,{4,8—x(@) =0

n—o |jetf] €a
and
lim sup ||, 2—1] =0.
n-on flt]| £a
The topology which corresponds to §-convergence we call §-topology.
It coincides with the topology discussed in [4], and is analogous to the
well -known Skorohod’s topology (cf. [1], [6], [9]). With the respect to
S-topelogy, D is separable and topologically complete, and the Borel
o -algebra D coincides with the o - algebra generated by the coordinate mappings
(cL. [4])
Given a probability measure P on (D, D), let T, consist of those te T
for which

PixeD: x is continuous at #} = 1.

For a =(ay, a,) let D([0, a;]x[0, a,]) denote the space of real valued
functions on

[0, alj X{{), az] = {t = (t}_, tz)e T ti = &, = 1, 2},
which are “continuous from above, with limits from below”. The space D ([0, a,]
x [0, a,]) is analogous to D[O0, 17? (for D[0, 17* <f. [2], [8], [9]).
Let 7,: D D([0, a,]x[0, a,]) be defined by
' fnx(t,}=‘x{t)a by gals Iz‘-‘gaz-

From [4] we have

Tueorem 1. Let P, P, P,, ... be probability measures on(D, D). Then P,= P
if and only if Pt ' = P, ! for all aeT,. (Here = means weak convergence).

By this theorem one can restrict oneself to the space D[0, 1]* when
considering the convergence in D[0, o)
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3. The space of realizations of random measures. Let M = M (T) denote the
class of all measures on (T, B(T)) such that u({0} xB)=pu(Bx[0})=0,
Be B(R,)and pA < oo for all bounded A € B(T). (Here B(T)and B(R ) mean
Borel g - algebras of subsets of Tand R, = [0, c0), respectively). Every ue M can
beregarded as a functionin D = D(T) which we call the distribution function of u
and denote also by u. Thus, we will not distinguish between a measure and its
distribution function.

Let s denote the relative topology on M. M is a closed subset of D. Thus,
topological space (M, s) is separable and topologically complete. Let 9, denote
the Borel o-algebra of subsets of (M, s). We have M, < D.

Let g, pty, Mo, ... M be given. We say that u, v-converges to g if p,(¢)
— () for all continuity points t of u.-

One can introduce a metric corresponding to v-convergence which makes
M separable and complete {cf. [3], [5]). We denote by v the corresponding
topology and by 9, the Borel g-algebra of subset of (M, v). s-convergence
implies »-convergence but not vice versa. Thus M, = M,. Actually, M, and
9, coincide with the o-algebra generated by coordinate mappings
(cf. [4], [5], [9]). Let us put M= IM, = M,.

Write 1

N = {peM: pBeZ, ={0,1,...}, BeB(T)}.

N is s-closed and v-closed subset of M and Ne 9t

We turn now to the problem of characterizing the compact subsets of the
topological space (M, s). By Theorem 1 we may restrict ourselves to the space of
functions defined on [0, 172

Let Dy = D[0, 11>(M, = M [0, 11% be the space of functions in D (in M,
respectively) restricted to [0, 11° = {(s, 1): 0<s, ¢ <1} with Skorohod (re-
lative) topology (cf. [2], [8], [9] for the space D;). We may assume that all
functions in M, are continuous at (1, 1).

For xeM,, te(0, 1) and & > 0 set

Wfila{r:’ X) = j [,X(E"‘}‘{:}',é 1}”)(‘(3: I)Jdﬁ_(sa 1)

{t— 6,0+ 8)

and

wiP (t, x) = | Dx(L, t+8)—x(1, s)1dx(1, 5)

{t—d.t+ )

THEOREM 2. A set A = My has compact closure in the Skorohod (relative)
topology if and only if supx(1, 1) < o0 and

xeAd

(1) lim supx(d, 1) = lim supx(1,8) =0

é—+0 xed G0 xgd
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@ lim sup[x(1, 1)—x(1—3, 1j] = lim sup[x(1, 1)—x(1, 1 =] =0
A=+ xsd g0 xgd
and, for all te(0, 1),
(3) lim supwi(r, x) =0, i=12.
A0} xed
Proof. For xeM, and 0 < < 1, put
. (8) = inf max | x (s =0, P —0)—x(s"" 1, V7))
iJ

where the infinimum extends over the finite collections [(s%, 1)} of points
(s, 1) satisfying the following conditions:

0=sP<sP < .. .<sP=1,
J 0= <V« . <19 =1,

s 5 (WD U-B g i=1,..,p j=1,...,q.

(4)

If 4 has a compact closure, then supx(l, 1) < ¢ and (cf. [8])

xzd

(5) lim supw,(8) = 0.

-0 xed

Obviously, conditions {1} and (2) also hold.
Given o and &, decompose [0, 1) = (s, 1): 0< 5,1 <1} into rectangles
[s"~ V™) x [1V=", 1), such that s®—s""Y > 26, 19—~ > 25 and

max [x(s¥ =0, ¥ —0)—x (s Y, ()] < wl (26)+&.
j"j

Then for any r (0, 1)either(r—&, t+38) = [5¢ Y, s forsomei, 1 €i< p,in
which case :

(6) x(t48, D—x(t—8, 1) < x(s¥ =0, I)—x(s*" 1, 1) < w (20} +¢,
or some s lies in the interval (1—&, t+48), in which case
)‘;x(sﬁt—‘o, 1)=x(t=46, 1) < wi(20)+e,
Ix(t+6, D—x(s", 1) < w}(20)+e.
If (6) holds, we have
8)  wi'(r, x) < x(1, D[x(@+d, D—x{r—4, )] < x(1, 1) [w(20)+¢].

(7

If (7) holds, we can divide the interval (t—4&, r+4) into subintervals
(t—8, s and [s%, r+8). Then we have

©) wil(r, x) < 2x(1, 1) [0 (28) +€].
By (8) and (9) we have wiP(r, x) < 2Kw/(28), where
K =supx(l, 1).

xsd
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Analogously, wi®(t, x) < 2Kw/(238). Thus, (5) implies (4) which proves the
necessity. -
To prove the sufficiency, define

4.(8) = mz;:g.d”’(&),
[

where

A (0) = sup jmin|jx(t, -}—x(s, Y, lIxtu, J—x(, H, s<t<u, u—s <8y,

lx(t, )—x(s, )l = sup|x{t, u)—x{s, u)i;

the modulus A2 (5) being defined analogously.
It suffices to show that (cf. [2], [7])

(10) lim supA9(0) =0, i=1,2.

d-+0 xed .
For arbitrary é > 0, te(0, 1) and *e(t—0, t+J), we have
witl(r, x) = x(t+d, N[x(t+5-0, 1)—x(t—4, 1)]—
- | x(s Ddx(s, )= | x(s, Ddx(s, )

£~ 8,4%] {1 + &)

= [x(r*, D)—x{t—3d, D] [x(t+3, 1)—x(t* 1)]
= [min (x(t*, D)—x(t—38, 1); x(t+6, )—x{r*, 1)]1%
- Thus
(11) AP (28) < [supw”(t x)]V2.
Analogously
(12) A2(20) < [supwi? (¢, x)]2.

It is easy to see that from (3) it follows
(13) lim sup supwd (¢, x) =0, i=1,2.
60 xed 1t

In fact, if this were not true, we could find & > 0, 1, and 6, — O such that
w§l (ty, x) > & for some xe 4, k =1, 2, ... If ty — to, then for an arbitrary o the
mterva! (to—9. 1o+ 8) contains (1, — &, 1, + &) for sufficiently large k, and hence

wi (Lo, X) > wi) (ti, X) > &,

which contradicts (3).
Now by (11)-(13) condition (3) implies (10).
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4. Convergence of random measures. By a random measure on Twe mean any
measurable mapping of some fixed probability space (2, €, P) into (M, ).

An N-valued random measure is called the point process.

Given a random measure ¢ on T let T; consist of those te T for which
Pt =0)=1. Write T, = \T;.

~For a random measure ¢ and t = (t;, t,) we set

E(e) = &[0, 1] x[0, t3]}.

We denote by &, 33;*‘ or zf,,ﬂé convergence in distribution of random
measures &, to ¢ in the s-topology or v-topology, respectively.

THEOREM 3. Let &, &4, &, ... be random measures. Then £, '—ﬁﬁi if and only if
&, & ¢ and the sequence &, is relatively compact w.r.t. convergence in distribution
in the s-topology. *

The proof folluws immediately from the facts that &, 4 £ is equwalent
to (&,(ty), .-, &l () > (E(ty), ..., E())forallke Z, and all ¢, ..., f,e T;, and
that the distribution of any random measure ¢ is determined by the disstributions
of (£(2), ..., £(1)), ke Z, witht,, ..., 1, running over an arbitrary dense subset
of T. '

Given a random measure £ on 1, a > 0, t >0 and J, write

wih(a, , = | [EC+6, A)—E(s, a)lEds, a)
{t— b0 +8)
and
wPa, 1, &)= | [Lla, t+8)—¢(a, 9]¢(a, ds).
{t—d,1+4)
Tueorem 4. Let &, &,, €, ... be random measures. Then £, 3 & if and only
if- the following conditions. hold:
Jor all keZ, and t,, ..., 4,eT;

{5@»’(11) oy ':~n [tk)) (f (f } é(th))
and, for all a>0, t={(r,,1,)eT; and & >0,
(14) lim limsup P {w§)(a, t;, £,) > &} = 0.

d=+0 w0

Corourary. If T, = T, then Z, 8¢ if and only if zf,,—-s E.

The proof follows fmm Theorems 2 and 3.

5. Convergence of superpositions of point processes. Here we apply Theorem 4
to obtain conditions of convergence of superpositions of point processes to the
Poisson process. .

A triangular array of point processes ni, ..., &m, (7 =1, 2,...) is called
infinitesimal if, for all t=(t;,t;)e T V

lim max P&, >0} =0.

w1 SkSky,
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We recall that ¢ (¢) denotes the number of points of £ in the closed rectangle
[0, 1,1x[0, 15]. |

A point process ¢ is called Poisson process with intensity i, Ae M, if
Ay, ..., EA,, ke Z,, A;e B(T) are independent when A4,, ..., 4, are disjoint
and £4 has the Poisson distribution with parameter A4 for all bounded
AeB(T). .

For Ae M let T, be the set of continuity points of A. Write T, = T\T,.

TueoreM 5. Let &y, «.., &, (n€ Z ) be an infinitesimal array of independent
point processes on T. Let  be a Poisson process with intensity i. Then

kp »
(15) E= Y Eu B¢
k=1
if and only if the following conditions hold:
for all teT ’
kl‘l
(16) Y Pilu®>11-0, n>oo;
k=1
Jor all ¥eT,
. ..
(17) A,(6) = Y PlEg(®) > 0) » A(f), n=>co,
k=1

' and for all a>0 and w=(u,, u)eT,,
(18) lim imsupw®(a, u;, A,) =0, i=1, 2,

d=+0  n-va
where
wi(a, uy, 4) = [ [A(u+6, a)—4,(s, 9)]4,(ds, a),
(ty ~ gy + )
wi? (a, uy, A,) being defined analogously.
CoROLLARY. If 4 is continuous, then imgi if and only if for all te T

by
lim ¥ PiEan>1) =0
oo fe=]
and
krl
lim ¥ P&.() >0 = A
Bovot ksl

Proof. By [5], &, ¢ if and only if (16) and (17) hold. So by Theorem 4 it
suffices to show that condition (14) of Theorem 4 implies (18), and vice versa.
Let (4, v)e T, and a > 0 be given. Write

T =minle: Eu(t,a)>1), k=1,..., k.
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We have

Piwia, u, &) >0} 2 P (=0 < 14 < 1y SU+8, Tp >a, m# k, )]
k#l

2 Pia,a) =0} ) [P{,(u+d,a)> 0]~

ki
Piculs,a) > 01dP (& (s, a) > 0]
= P& (a, a) =0 wi(a, u, A,)+o(l) (n- o).
Analogously,
PiwP(a, v, &) > 0! = P, (a, a) =0} w (a, u, A,)+o0(1).

Thus (14) implies (18). »

Now we prove the reverse implication. We have
(19) PiwiMa, u, ¢, 21 < P ,’k{il(uwé <7, <Ty<u+d))+

+P }Lzl{g“,,k (u+d, ay> 1)}

< wi(a, u, A)+0o(l)  (n— o).

From (19) and the analogous inequality for w{®(a, v, &,) it follows that (18)
implies (14). This proves the theorem.

By Lemma, condition (17) together with (18) means that A,(-) s-con-
verges to A(-). Thus we can reformulate Theorem 5 in the following way:

THEOREM 6. Let £,y ..., E,» NE Z 1, be an infmitesimal array of independent
point processes satisfying (16). Let ¢ be a Poisson process with intensity A.

Then
Z
k=1
if and only if A,(-) s-converges to A(-).

if"v.'

ﬂ'n:
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